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Influence of a magnetic field on the Soret-effect-dominated thermal convection in ferrofluids
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We investigate theoretically the influence of a magnetic field on the growth of convective rolls in a slab of
ferrofluid subject to a vertical temperature gradient. Due to the pronounced Soret effect of these materials in
combination with a considerable solutal expansion, a dynamic description as a binary mixture is appropriate.
We first derive a comprehensive set of magnetic field effects in the statics and dynamics of binary mixtures.
Among those, the two prominent ones, the Kelvin force and magnetophoresis, are studied in detail with respect
to their influence on the thermal convection behavior. The main difference from the case without an external
field rests in the importance of the boundary layers, which influence the bulk problem through the magnetic
boundary conditions. We discuss an analytical approximate solution and compare it with a numerical multi-
mode expansion.
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[. INTRODUCTION from a very thin boundary region3] and a linear magnetic
field profile (Sec. lll). The stability of this ground state is
Ferrofluids are dispersions of heavy solid ferromagnetidnvestigated by solving approximately the nonlinear dynamic
grains suspended in a carrier liquit]. With a typical diam-  equations for deviations from it. Within the usual Boussinesq
eter of 10 nm the particles are quite large on molecula@pproximation five magnetic field effects, characterized by
length scales, resulting in an extremely small particle mobildimensionless numbers proportional to the field strength
ity [2]. This leads to a situation where demixing effects takeSquared, show up in the equations and boundary conditions
place on time scales far beyond any reasonable observatiéRe¢: V). Among them,M,, the strength of the magnetic
time. On the other hand, ferrofluids are characterized by &€'ative to the buoyancy force, ad, the magnetophoretic
large thermodiffusive or Soret effect. As a result of the joint"UMber, seem to be the most important. .
action of thermal and solutal buoyancy forc@sg., for a To solve the system of equations we first set up a multi-

. " ; mode Galerkin descriptiofSec. \j, where in particular for
cyclohexane carrigy the critical Rayleigh number Refor the concentration and the magnetic potential the inclusion of

thehonset o:clc%nvefctlon is dr?magg;i\%éeauced as comparer%any modes turn out to be essential. An approximate ansatz
to the pure fluid reference value - However, Rals 5 sqlved analyticallySec. V). Here the necessity of dealing

experimentally inaccessible due to the extremely slow.arefylly with the boundary layer profiles of concentration
growth of convection patterns, requiring extremely large 0b-3ng magnetic potenti@ippendixes A and Bbecomes ob-
servation times. It has been shown recef@ythat, starting  vipus. This approximate analytical solution is compared with
from an initial motionless configuration with a uniform con- the numerical Galerkin results, in particular with respect to
centration distribution, convective perturbations grow evenhe influence of the Kelvin forceM,) in Sec. VII. The role

at Rayleigh numbers well below the threshold’Ré pure  of magnetophoresisM,) on the instability behavior is dis-
fluid convection. This happens within a time, small com-cussed in Sec. VIII.

pared to the creeping solutal diffusion time, but almost as
fast as pure-fluid convection does at-R@&.

Here we investigate the influence of an external magnetic
field on this convection scenario for positive separation ratio Ferrofluids can be treated as a superparamagnetic con-
. We first (Sec. 1) review the hydrodynamic equations for tinuum[1] that consists of two different nonreacting materi-
binary mixtures in the presence of an external magnetic fieldals (binary mixturg. An external magnetic field easily in-
We assume the magnetization to be already relaxed to itduces a considerable magnetization in the fluid. This
equilibrium value on the time scales under considerationmagnetization is in principle a dynamic degree of freedom.
The magnetic field effects then come basically in two differ-However, it relaxes rather quickly to its equilibrium value
ent varieties. First the Maxwell stress, which can be writtenand orientation given by the Maxwell field. Thus, for the
as a Kelvin force in the momentum conservation lghe  time scales of interest for the convection problem, we can
Navier-Stokes equation and second the temperature andalways assumeéM =M (H). Here we review the hydrody-
concentration dependence of the magnetic susceptibility imamic equations for a binary mixture subject to an external
the statics, which gives rise to a field dependence of heat argtatic magnetic field and bring them into a form suitable for
concentration currentémagnetophoresis If a temperature the convection problem. The hydrodynamics is most easily
gradient is applied across the ferrofluid layer, the experimenset up by using those quantities as dynamic variables that are
tally relevant convection-free ground state is not the trueaelated to local conservation lay4]. In our case, those are
stationary state with a linear concentration profile, but thethe densityp, momentum densitpv, entropy densityr, and
purely conducting state with a constant concentrategmart  concentrationC (of magnetic particles while the chemical

II. BASIC EQUATIONS
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potentialu, the velocityv, the temperatur&, and the relative T
chemical potentiaj, are taken as their respective thermo- €=€ot f(ﬁff)2+ B(oa)(5C)
dynamic conjugate quantities. The dynamic equations read v
[4] 7)'/ 2 1 2
+§(5C) +§(1+X)(5H) . (10
p+div(pv)=0, (1)

In this form the static equations generally are not suitable

) o~ ~ el R for ferrofluids, since the magnetic susceptibilitydepends
o+VvVo=V.-kVT+V.D;V r3 T 2 considerably on the concentrati¢of the magnetic particles
the temperature, and the external field. Switching to the tem-
_ P ~ perature as variable by a Legendre transformafiene
p(C+V-VC)=V~DV(7C +V-D;{VT, (3 —(80)(8T), and takingy= x(T,C,H?), we get
_ . _ Cy BHCy
p(vi+v;Vivi) + Vip=Vjpwiji Vivk+ MjViH;+pgi, (4) 00 = 01— == 0C+ xrHo- 5H, 1D
while the magnetic fieldd and inductionB are determined Bucy
by Maxwell’s equations, which read in the static and noncon- Sue=yoC+ T 6T+ xcHo- 6H, (12
ducting case
V.-B=0 5) 5B:(1+X0)5H+HO(XT5T+X65C+XHH0~5H),( )
’ 13
VXH=0. (6)  where x, is the (constant magnetic susceptibility taken at

the equilibrium fieldHy, equilibrium temperaturd,, and
Generally, due to the presence of an external field, the trangquilibrium concentratiorC,. It is assumed to be a known
port coefficientsk, Dy, andD should be written as tensors function ofHZ. Up to second order derivatives gfwe have
of the form D;;=D4;;+DRejHy with Hall- or Righi- ,
Leduc-type contribution§5]. However, those terms are in- S EHzﬂ X (14
operative for the geometry considered below. The same is HEWV 2 072
true for similar linear field contributions to the viscosity ten-

sor [5], which can qualitatively change the patterns in the To x
Benard instability in ferronematid$], but do not contribute Bu=B+5—Hg 1 (15
o 2cy 9T aC
ere.

_ As usual fc_>r cqnve(_:tion _prob_lems, we a_ppl_y the_ Bouss- By 1 2az){
inesq approximation implying incompressibility diw0, Y=Y~ T—+ >Hoz ez (16)
neglect of the dissipation functidRin Eq. (2), and taking all 0
material parameters as constants except for the density in the 2
gravity forcepgF. The Navier-Stokes equatigd) has been X e X

o i ; ; XT +Hg 21 (17)
written in a form where the Kelvin force, withl =B—H [7], aT JT oH
shows up on the right hand side. Due to the incompressibility 5
approximation the pressugeis no longer a thermodynamic _c9_)(Jr 5 X (19
variable and its dependence on the magnetic field is irrel- Xe= 5 05C gH?’
evant. It is only an auxillary quantity that ensures the incom-
pressibility condition for all times, but it is not needed in the ax ) X
following. As discussed above, the magnetization is not a XH:4W+2HO(&H—2)21 (19

dynamic degree of freedom.

i To (t:)lotse the tshystem of ect]uationst_\;\_/e neeg t':]he static lr;lal"’lfnplying anH2 dependence of the usual static susceptibili-
lons between the conjugate quantiies and the varablegas “1n principle, the static susceptibilities can be arbitrary

Standard procedure givéd] functions ong. Thermodynamic stabilitypositivity of the
energy functional requires the following positivity condi-

T .
T=— b+ BcdC, (7)  tions:

\%

CH>O, ')’H>O, 1+ X0>0, ?>0,
Spe=y6CH+ B:d0, (8) )
BHCv — —
5B=(1+X)5H (9) CH7H><? ) CH6>X‘2|'H§a 7H7>X§H21 (20)
derived from an energy density with €= 1+ yo+ xnHa [8].

046301-2



INFLUENCE OF A MAGNETIC FIELD ON THE SORET. .. PHYSICAL REVIEW E 69, 046301 (2004

In order to retain the buoyancy force, the temperature anevith A the normal to the boundaries. For the concentration of
concentration dependence of the density has to be kept in thiee ferroparticles we have the impermeability condition, i.e.,

gravity force, which can be written as no flux on the boundaries is allowed,
pOF =~ Gepo(1+ aysT— acdC—ayHg- 6H) 5, , D yyi-VC+ poD7A-VT+D xcHo: (A-V)H=0. (30)
(21)
taking thez direction as the vertical one. The magnetic field Ill. HEAT CONDUCTING STATE

contribution to the buoyancy force due to deviations of the g, 54 layer of thickness with prescribed temperaturds
magnetic field from its constant and homogeneous equilibémd-rl at the boundarieg=0 andd, respectively, and with

rium value has been introduced for completeness. infinite lateral dimensions, the pure conductive state is easily
Combining the static and dynamic parts, the basic equagnd. The concentration and the magnetic field show linear

tions are z deviations from the equilibrium values, given by the
divv=0, 22) boundary condition$28), (30):
v=0, (31
M vV | T4 xeHo | = +v-V | H
Tolat 7Y XTHo | G TV T=To— Bz, (32
_ — YH — Xc D
=kAT+D—AC+D+—Hgy-AH, (23 - 1
" po Tpo ° C=Cot 5 B2, (33
ool 24y |c=D " AC+D;AT+D XM, AH D Yiux7— PoXcDr
ot Po Po ’ H,=Hg| 1+ ) Bz|, (34)
(24) 2
where 8= (Ty—T4)/d, Hg is related to the strength of the
%-I—V'V (cUrv); = €y, 0e(a Vi T+ aViC+ ayHo- ViH) ~ magnetic field outside the layéfg* by thg expressiom
=[Ho+M(Ho)]&;, D31=peD1[1+O(Hp)], and D,
1 =Dyy[1+O0(H2)]. However, as was the case in thermal
+ p—6ik|(H0'V|H)(XTVkT+XchC) convection without a magnetic fiel®], to reach this con-
0 ductive state one needs to wait until the very slow process of
+ vA(curlv), (25 concentration diffusion has equilibrated. As estimatef3in
this takes as long as a week under the usual experimental
with A=V? and conditions. For this reason we consider the stability not of
5 the state given by Eq.33) but of the quasistationary state
— . .= BuCy BuCy when the temperature field E¢B2) is equilibrated, but the
k=k+2Dt +D , (26) e .
poTo pPoTo concentration field is still homogeneous except for very thin
boundary layers near the boundaries. This situation is similar
— . BuCy to that without a magnetic field considered[BJ. With this
Dy=D:+D poTo (27)  approximation the quasistationary state reads
The temperature conduction coefficientissxTy/cy, the v=0, (39
d|ffu5£)n coeffientD.=D yy /pg, the Sf)r_et coeﬁ_ﬂment is T=T,— Bz, (36)
Ds=D+/pg, the Dufour coefficient is Djs
=D1yyTo/(poCh), andv is the dynamic shear viscosity. C=0C,, (37

The boundaries are assumed to be ideal thermal conduc-
tors; thus the temperature of the fluid at the boundaries is XT
identical to the applied temperature. Note that in real experi- H,= HO( 1+ ?BZ)' (38)
mental situations the finite heat conductivity of the bound-
aries could lead to some noticeable eff¢éfs but we are not  This state is not a solution of the boundary conditi&0),
going to discuss these effects in what follows. For the velochut it gives a good approximation to the solution for experi-
ity field we assume *“rigid” boundary conditions, while for mentally relevant times.
the magnetic field and magnetic induction the usual continu-

ity conditions apply: IV. DEVIATIONS FROM THE CONDUCTING STATE
N- (Bipt— Bexy) =0, (28 The next step is to write the equations for the deviations
from the heat conducting statg85)—(38). To do so in dimen-
AX (Hipt—Hex) =0, (290  sionless form we introduce the characteristic scalef®r
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length, d%/x for time (with k=«Ty/cy), Bd for tempera-
ture, BD1pod/(Dvyy) for concentration,x/d for velocity,

and BdytHo /€ (with'e=1+ yo+ xnyH3) for magnetic field.
For the deviations from the magnetic figl@8) a scalar po-
tential can be introducedd=H,&,—V ¢, while the mag-
netic potential outside the layer is defined bi,=HS"

—V ¢¢. The deviation of the temperature from Eg6) is 6.

Then Egs.(5) and(22)—(25) lead to

V-v=0, (39
e +(v- V)}(G M4Vs)
=w(1—M,)+A0+FA(C—M,V,¢), (40
%+(V-V)}C=LA(0+C—M2VZ¢), (41)
Jd
ﬁ’ E‘l‘(VV) (Curl\/)i
=Raej W (1+Mq)0—(¢y+ M) C
+(Ms—M)V,¢]—RaM € (V. )
X V(60— ¢,C)+ A(curlv);, (42
(VZ+M3A,) = V,(6— C), (43)
A¢e=0, (44)

wherew is the z component of the velocity. The transverse
LaplacianAizA—Vi. The nondimensional parameters in-
troduced here are: the Rayleigh number

= a,B9ed*/(xv), the Prandtl number Prv/k, the separa-
tion ratio = anOST/(aayHD), the magnetic separation
ratio ;= — xepoD1/(x7yuD), the Lewis numberL
=yHcHD/(p§7TO)=Dc/K, the strength of the magnetic
force relative to buoyancyM,=BxH3/(pogeag€), the
magnetophoretic numbéf ,= DXCXTHSI(pOSTE), the non-
linearity of magnetizationMz=(1+ yo)/e~1— XHHS/(l

+ x0), the relative strength of the temperature dependence q

the magnetic susceptibilityl ;= )(THOTO/(CH_) the ratio of
magnetic to thermal buoyandyt ;= aHXTHO/(a,,_) and the
Dufour numberF—DT/(D_)—DSD /(kD¢). The stability
conditions(20) requireM ;<1 andM ,¢,,> — 1.

According to our choice of “rigid” and ideally conducting

Ra,
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and the magnetic boundary conditiof#8) and (29) are
?(Vz¢+ YmC)— Vz(ﬁe| 2=+12=0,

V.-V, ¢e|z: +1/2=0.

These boundary conditions close the problem of finding the
fieldsv, 6, C, ¢, and ¢.

(49

(50)

V. SIMPLE GALERKIN SOLUTION

The set of equations derived in the previous section is still
unnecessarily complicated. We will simplify it first by ne-
glecting the Dufour effect, i.e., putting=0, as is usually
done for any liquid. Second, we discaM,, which is a
common simplification in the description of instabilities in
ferrofluids[10,11]. SinceM, is not related to concentration
effects, which we are interested in here, we expect not to lose
any reasonable aspect of the problem under consideration.
The same is true for the coefficielts. It may be important
in a situation where the concentration dynamics is not con-
sidered at all, since in that case it is the only nonthermal
contribution to buoyancy. Thus, we are left with three mag-
netic field dependent effects characterized Ny , 3. The
first denotes the influence of the Kelvin force and is expected
to have the dominant influence on the convection behavior.
The second effect, which we will treat in a second step,
constitutes magnetophoresis, the dependence of the concen-
tration current on the magnetic field. The third effect is due
to the nonlinearity of the magnetization as a function of the
Maxwell field. GenerallyM ; is rather close to 1the linear
case y=const orM~H); since the dependence d; is
rather weak we always taki®l;=1.1. The parametey is
known to be between 10 and 100 and can have negative or
positive sign depending on the ferrofluid u4d®]. Here we
consider only the case of a positive value af Making a
simple estimate, we find that the valyg, has the same sign
and is of the same order of magnitude asor typical fer-
rofluids.

The boundary value problem obtained in this way is still
too complicated to allow a simple analytic@ne-mode so-
lution), even if unrealistic “free” boundary conditions are
used for the velocity field. This is due to the magnetic bound-
ry condition(49) which involves the concentration. Sacri-
cing this condition, however, would change the bifurcation
scenario qualitatively, rendering such an analytical solution
worthless. Instead, any realistic treatment has to take into
account the boundary layer fields of concentration and mag-
netic field potential. We will do this analytically later on in a
simplified way guided by the numerical results, which we

boundaries, the boundary conditions for the deviations fronwill derive first using the Galerkin technique. To that end we

the conducting state read

6] = +12=0, (45

W|,= +12=0, (46)

VaW[p= 215=0, (47)
V,(0+C—M,V,$)|,=21=1—Mp, (48)

make the following ansatz of a two-dimensional pattern,
which is laterally (in the x direction infinite and periodic
with wave numberk. These equations describe two-
dimensional convection in the form of parallel rolls along the
y axis in an infinite slab of thickness 1. In the lateral direc-
tion we will restrict ourselves to the fundamental mode, ne-
glecting higher harmonics, while in thedirection (across
the layej a multimode description will be used where nec-
essary. We have
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C(x,z,t) — Co=Co(z,t) + C41(2,t) cOSkX, (51)
0(x,z,t) = 0o(z,t) + 01(z,t) coskX, (52
vy(X,2,t)=— (1K) V,w,(z,t)sinkx, (53
v,(X,2,t)=w4(z,t)coskx, (54)
B(X,2,t) = do(Z,t) + p1(z,t)cOSKX, (55)

with incompressibility already built in. We can get rid of the
external potentiatp, by solving Eq.(44) explicitly. The so-
lutions that vanish az= * o and satisfy the boundary con-
dition (50) are ¢.=expk/2)expFka)p,(z==+1/21)coskx
for the rangeq1/2, «} and {—1/2, —«}, respectively. The
boundary condition$49) can then be written in final form

€(V,1+ Y€1) *Kepy|,— +12=0, (56)

Voot mCol 2= +1/2=0. (57

Substituting Eqs(51)—(55) into the nonlinear equations
of motion (39)—(43) and sorting for different lateral depen-
dencies yields the following system of equations:

By t(V2—K?)wy = —Rak?[(1=M1) 01— (s)+M1ym)Cy

—M1V,1]+ RaM 1K3( 01— ¢hnCy

— V1) Vil 0= o) + (V2—k?) 2wy,
(58

1
JtCo+ Evz(W1C1) =LVZ[(1+Myhm)Co+ (1—My) o],
(59

91+ W1 V,Co=L(VZ—K?)(Cy+ 6;—M,V, 1), (60)

1
0t00+ EVZ(W101)=V§00, (61)
901+ W1V, 00=— W1+ (VZ—Kk?) 0y, (62
(VZ=M3k?) 1=V 01~ thCa). (63)

PHYSICAL REVIEW E 69, 046301 (2004

wy(z,t)=A(t)cog(7z), (69)
0,(z,t)=B(t)cosmz, (69
0o(z,t)=G(t)sin 27z, (70

1-M,
Co(z,t)= m[Z— Oo(z,1)]
n=N
+ 20 ay(t)sin(2n+ 1)z, (71)

n=N
ci(z,t)=—60,(z,t) + Zo b,(t)cos Mz, (72)

" A(t)sin2mnz
d1(z,1)=Ag(t)z+ ngo % (73

which satisfy the boundary conditioriS6), (64)—(67) iden-
tically, if Ag(2+ k)+2§i1(—)”An+ YmEN_1(—)"by=0 is
chosen.

We point out that fory/=0 andy,,=0 the concentration
fields decouple from temperature and velocity. This reduces
Egs. (68)—(70) in the absence of the magnetic field to the
three-mode model introduced by LorefiZ3] to mimic the
dynamics of convective rolls in single-component Rayleigh-
Benard convection. In the case of finite magnetic field this is
a somewhat modified Lorenz model for a magnetic fluid
[14]. At nonzeroy and ¢,,, convection is modified by the
concentration field but we can adopt the above few-mode
expansion for temperature and velocf8] without modifi-
cations, because the diffusivities for heat and momentum are
large enough to prevent the appearance of strong gradients.
By way of contrast, owing to the small Lewis number, the
concentration field does build up steep boundary layers,
which we account for by &-mode Fourier series as given in
Egs. (71 and (72). The situation with a magnetic field is
somewhat intermediate, since the magnetic potential is
coupled dynamically(63) and by the boundary conditions
(56) to the concentration field with its strong gradients. We
use a multimode expansion for the magnetic field with a
number of moded,; which is selected independently if
For ¢, the modes are antisymmetric mwhile for c; sym-
metric modes are appropriate. The numbe@andN; of the

The field ¢, has already been eliminated with the help of contributing modes were taken large enough to ensure that
V§¢02Vz( 6o— ¥mCo). This has also been used to write the the results are insensitive against a further increase of these

remaining boundary conditions as
Vi(C1+ 01— M2V,h1)| =+ 1=0, (64)
VA(L+Maihm)Cot (1= M3) gl = - 1=1—M;, (65
01] 2=+ 12= 0ol 1= +12=0, (66)

Wil 7= = 1= VWq|,— +1,=0. (67)

numbers. For the parameter values considered Mere50
andN;=50 turned out to be sufficient.

VI. APPROXIMATE ANALYTICAL SOLUTION

In this section we derive an approximate analytical sta-
tionary solution, which fits the numerical solution, described
above, very well. To get this solution, we make use of the
fact thatL~10"* is extremely small. Starting with the sys-
tem of equation$58)—(63), we use the Lorenz representation

To solve this boundary value problem we adopt verticalof the temperature and velocity fiel®8)—(70) and derive

profileswy, 6y, 61, Cg, C1, and ¢, in the form

approximate solutions far,, ¢,, and ¢, avoiding the com-

046301-5



A. RYSKIN AND H. PLEINER PHYSICAL REVIEW E69, 046301 (2004

plicated mode expansiair1)—(73). =B _ k sinh(az)

Let us first consider Eq59). In the stationary case, we ¢11=m sin(7z) — Ksinf(al2) +a coshal2)
can integrate this equation once. With the boundary condi- (80)
tions (65) and (67) we find

1 with a=\Msk. The solution for¢,, has the form
E(chl):LVz[(:H' Matfm)Cot(1—My) 6p] —L(1—=My).

(74) $1,=M sinhaz)— %(sink{az) f: cosh{ag)ci(§)dé

Far from the boundaries, andc,; are~L. This can easily
be seen from the consistency of Ef1) with Eq. (74) taking z ,

into account that far from the boundaries the derivatives of —cosf{az) fo S|nr'(a§)cl(§)d§> (82)
the functions are small. Thus, in E4) we can neglect,,
when we are far from the boundaries. Futhermore, we ca
neglectV,0, compared to 1, since its influence is very weak
[15]. This latter approximation is good, when the amplitudeboundary condition79). This is done in Appendix B with
of the velocity is still small, sinc#, is the nonlinear termin o6~ eyt
the Lorenz model. Taking this into account we can get the
concentration field far from the boundaries as

ith M a constant of integration. Note thet ,(z) has to be
an antisymmetric function iz. To find M we consider the

L2 1/3
ci=—2L(1—M,)/w. (75) ¢12(Z)=a(1_M2)(7T4A2(1+ l/fmlvlz))
To satisfy the boundary conditions far; and to find the Kifm .
profile of the concentration field near the boundaries one stinr(a/2)+?acosr(a/2) sinh(az)+0(L),

needs to solve the boundary layer problem. The expression
(75) diverges close to the boundaries aszH(/2)? (if the
boundary is ore=1/2). Thus, the solution of the boundary e .
layer problem has to behave asymptotically like z1/( Wherea=—Jq{f'({)d{~2.791 is a real number of order 1
—1/2)? far from the boundary, in order to match with Eq. independent of any parameter of the problem, and the func-

(75). The boundary layer problem for the concentration fieldtion f(¢) is defined in Eq(A7) in Appendix A. _
is considered in the Appendix A. Having found an approximate expression for the profiles

Since the boundary layer depdtis proportionalL ¥ (see of the concentration and magnetic potential we substitute
Appendix A the contribution of the boundary layers gives thém into Eq.(59) and then project this equation on the
only small~L 3 corrections to the amplitude equation and Weight function co¥mz). Equations(61) and (62) are to be
the expressiori75) can be used withv, = A co(2). projected with the weight functions sing2) and cos{),

The next step is to calculate the magnetic field potentia[€SPectively. This leads to a system of three algebraic equa-

. from Eq. (63). To do that we split the magnetic potential ions for the amplitudesA, B, G [Egs. (68)—(70)], from
into two partseg,= ¢,,+ b1, s that which we get the finalimplicit) expression for the saturation

amplitudeA as a function of the parameters of the problem:

(82

(VZ=Mgk?) 1=V, 01, (76) _
187*  1+My(n—277G)
(Vi— M3k?) 1= — i VsC1, (77) Ra  1+3A%407°
with the boundary conditions 3272
+(1-My) 3A7 L(¢+My1ihm)
€V, 115 K11l 1= 112=0, (78)
. o L2A 1/3
€(V;p12F ¥imC1) £K P12l 1= +12=0. (79 +y(1=yG)M 19 W) } (83
¢m 2
The solution for¢,4 is straightforward and simple when
we take the temperature field in the form of E9), Here
2 37°sinha/2)
n=1l- 2=t 2 - = , (84)
me+ac  (mo+a%) (4w +ay)|[ wsinhal2) + eacoshal2)]
—_3(, w? w? a 373(8m%—a?)sinh(al2) o5
KA 72122 " 7% a? [= sinh(@l2) + eacoshal2)] a(a’+ 20a272+ 6477 * (85)
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B 27 sinh(a/2) 86
Y Y @2+ 47 [ 7 sinh(al2) + ea coshial2) ]’ (86)
_ 3ma? g
T (&7
|
G, the stationary amplitude df, Eq. (70), is independent of the magnetic nature of the grains and de-
scribes the concentration buoyancy force due to the density
9A? difference of the solvent liquid and the magnetic grains. The

G

(88) second mechanism is due to the Kelvin force which arises

from the concentration variations of the magnetic particles

while B=(57%/2A)G. In Eq. (83) we have chosek= in and the resulting strong variations of the magnetic suscepti-
order to S|mp||fy the formula. This is reasonable, since thebl“ty This effect relies on the magnetic nature of the ferrof-
wave number of the maximum growt is close tor. The  luid particles and is characterized by the magnetic separation
second term on the right of E¢83) can be seen as an ex- ratio ¢p,.
pansion iny,,L %2 and L. Since the prefactor of the former ~ Without any concentration variationg/=0 and = 0)
is quite small, we have also kept the leading contribution tove have the usual pitchfork bifurcation with respectMq
order ¢,L. The complete evaluation of th¢L term is  (Fig. 1). If only the nonmagnetic mechanism is switched on
hardly worth doing, since it makes formul@3) unnecessary (#¥=10, ¢,=0), the bifurcation looks like an imperfect one
complicated without significantly changing the quantitativeWith a nonzero saturation amplitude even in the subcritical
results. The occurrence of fractional powersAdfandL as ~ Parameter range. In the supercritical parameter range the am-
products with ¢m and Ml indicates the importance of the plltude approaches that of the homogeneous ferrofluid. If we
boundary layers in the case of an external field. additionally switch on the magnetic buoyancy effeqt(
=10), the bifurcation deviates strongly from the previous
cases and, in particular, has a different saturation behavior
for strong magnetic fields. We should point out that in order

We first investigate the influence of the Kelvin force onto get this numerical result at least 50 modes each for the
the convection and disregard magnetophoresis for the maoncentration and magnetic field have to be taken into ac-
ment by puttingM,=0. The equations for the mode ampli- count. Comparing this to the case without a magnetic field
tudesA, B, G, a,, andb, have been solved by a Runge- [3], when 20 modes were more than enough, we can see the
Kutta integration. The wave numbds, usually taken to importance of the boundary layers when the magnetic field is
characterize the mode of maximum linear growth rateon. In Fig. 1 the analytical results, E(83), are shown as
N (k,Ra), varies between 3 and 3.5 within the Rayleigh numdashed lines. The agreement between the numerical and ana-
ber regime investigated. However, since the final predictiondytical result is very good.
of our model turn out not to depend sensitively on the
value chosen, we adopt in all of our simulatidas 3.1. All
runs are started from the initial configuration of an undis-

turbed linear temperature and magnetic field profile and a |n this section we discuss the influence of magnetophore-
constant concentration as given in E(#6)-(38) and small  sjs (M,+0). In the implicit equation for the amplitude, Eq.

random velocity fluctuations to start the convection process(gs), the magnetophoretic effect is manifest in two different
In all of our runs the convective motion was found to

settle into a stationary convection in the same way as it is in
the absence of magnetic fie|@]. There are roughly three
different regimes of time evolution: linear growth, nonlinear
transition to a saturation state, and the saturation state itself.
When we fix the temperature gradidne., take the Rayleigh 3
number constapand change the magnetic field strength, we

have the bifurcation picture as a functiondf,. This is the 2
most convenient bifurcation curve to compare with experi-

ment, since during experiments it is much easier to change 1
M, (i.e., the magnetic fie)dthan the Rayleigh numbér.e., M
the temperature differenge This bifurcation diagram is '
shown in Fig. 1 for different values of the separation ratlos
and¢,. These two parameters are related to the two differ- FIG. 1. The saturation amplitudie,,= A(t— ) as a function of
ent mechanisms of how the concentration inhomogeneity; at Ra= 1300 for different values ofy and ¢, (see text The
changes the bifurcation picture. The separation ratics  dashed lines are the analytical resi@8).

= 1607°(1+ 3A%/4072)’

VII. INFLUENCE OF THE KELVIN FORCE

VIIl. INFLUENCE OF MAGNETOPHORESIS
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ways. First, there is the global prefactor{M,) in the sec- cated than without a magnetic field. Nevertheless, we were

ond term and, second, there is the denominator (lable to present an approximate analytical solution by taking

+ M) in the term proportional td.?>. SinceM, is  explicitly into account part of the boundary layer behavior.

negative butM,,,>—1 [cf. the discussion after Eq44)]  The agreement between the analytical and the numerical so-

both effects grow with the external field. lutions was very good. We also discuss the limitations of the
The second effect gets very pronounced when the produdtinary mixture model. In a strong external field diffusion

M, approaches its stability limit-1. This happens for a fails to prevent agglomeration of the particles due to magne-

magnetic fieldH,— H with ng yH?ng, where, however, tophoresis. In that case the breakdown of the binary mixture

the susceptibilities may themselves fveeak functions of ~model shows up by the occurrence of a negative effective

H2 for strong fields. In that limit the boundary layer becomesdiffusion constant.

singular, which is indicated in the numerical approach by the

necessity to take into account more and more spatial modes. ACKNOWLEDGMENTS

The analytical treatment also breaks down and(B8). is no ) . . N

longer a good description. The breakdown of thermodynamic Helpful discussions with M. Lcke are gratefully ac-

stability also shows up in the diffusion equation for the con-knowledged. This work is supported by “Schwerpunkipro-
centration gramm 1104 Colloidal Magnetic Fluids” of the Deutsche

Forschungsgemeinschatt.

ac(z,t)=L(1+ M) d2c(z,1) (89)
APPENDIX A: THE BOUNDARY LAYER PROBLEM

that follows from Eqgs.(41) and (43) under the assumption We consider Eq€60), (74), and(79) in the vicinity of the

that t.he temperature equn!brates much faster. Rgr-H. oundaryz=1/2. Near the boundary the derivatives with re-
the diffusional time scale diverges and, therefore, the bound- i

. ) . spect taz of the functionscy, ¢4, and¢ are large and we use
ary layer profile gets sharper. This can also be inferred fron)

the Eq.(A8), which shows the boundary layer depth to scalethIS fact to simplify these three equations as

with [L(1+ ¢,,M,)]¥3. For the amplitude the effect o,

is very weak and hardly visible in a plot like Fig. 1, except E(chl): L(1+Mogm)co—L(1—My), (A1)
for the immediate vicinity of the stability limit ( My, 2
=0.

The breakdown of thermodynamic stability may be re- W1Co=L(C]— M7, (A2)
lated to particle agglomeration and internal structure forma-
tion. The magnetophoretic effect is due to the force that b= — by, (A3)

drives magnetic particles to areas of larger magnetic field

strength. This leads to agglomerations where the magnetignder the assumptions

field is larger and consequently attracts further particles. This

mechanism is compensated by tfmagnetic field indepen- o<ol, and V§> k2. (A4)

denj diffusive motion of the particles. When the strength of

the magnetic field exceeds a certain value, the diffusion fai|$:ombining these three equations into one we get an equation

to prevent agglomeration of the particles and structures aryr ¢, ,

built. In that case a description in terms of an ordinary binary

mixture is no longer possible. 1 L2(1+ M2 .
FWe = W ci—L(1—M,). (A5)

IX. CONCLUSION

We have derived the complete set of equations to describil\aIear the boundary=—1/2 we haves =z~ 1/2<1, Expand-

. - _ 2 2
ferrofluids in an external magnetic field in terms of a binaryIng cos(m) in powers ofe the velocityw, =Am’e” and Eq.

mixture. Magnetophoretic effects as well as magnetic(A5) takes the form

stresses have been taken into account in the static and dy- +2A L(1+M )2
namic parts of the equations. They were used to investigate gtci=— 27m "
the thermal convection instability of ferrofluids in the pres- 2L(1=My) T A(1=My)

ence of an external magnetic field. As in the case without a o ) )
magnetic field, the effect of the concentration field is mani-/Ve rescale the concentration field andoordinate in such a

fest in an apparent imperfection of the bifurcation. A mag-Way that the final equation becomes independent of any pa-
netic field makes this imperfection more prononced. More/@meters and appears to be a universal equation defining the
important, however, not only does an external magnetic fiel@oundary layer profile,

lead to pronounced boundary layer profil@gth respect to

the concentration and magnetic potentiahis boundary E§4f+§2: fr (A7)

layer also couples effectively to the bulk behavior due to the 2 '

magnetic boundary condition. This makes the numerical so-

lution of the bifurcation problem considerably more compli- with

2. (A6)

046301-8
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¢ in the preceding section. Let us consider the first integral; the
2 4 6 8 10 second one is treated in the same way. We can divide this
0.2 integral into two parts:
04 1/2 1/2-A
¢ J cosf(aé)C1(§)d§=J costtag)c;(§)d¢
-0.6 0 0
-0.8 1/2
8, [ costagici(ae
] a 1/2—-A
[y (B2)

FIG. 2. The boundary layer profiles obtained frday the ana-
lytical solutionf(¢), Eq. (A7), (b) the multimode numerical solu-
tion scaled with Eq(A8) for M;=0.1, and(c) for M;=1.0 (M,
=0, =10, and¢,,=10).

Here A is a small but fixed value, chosen in such a way that
for z>A the bulk profile(75 and forz<<A the boundary
layer profile (A8) are valid. In the second integral we can
expand coslag) in the vicinity of £&=1/2. Then we can write

7T2A )1/3
- , =(1—-M z
Cl LT gy & @@=t 2) f cost{ag)c)(£)d¢
] )1/3 1/2-A
X f(2). (A8) z
TP A(L+ M) =cos|‘(éf ci(g)dg-l—asinl'(E)
2) J1p-a 2

Thus, the layer depth scales withL 3. We assume that the 2
boundary conditiori64) for the concentration field; can be X f (£€—1/2)cy(&dé+---
replaced by a homogeneous onf(+1/2)=0 leading to 2=

f’(0)=0. In this case the boundary layer profile becomes a a

self-similar. As a second boundary condition we require that Ecosl‘( E) Io(z)+asin)—(§) 11(2)

the function f(£) has the asymptotic fornf(Z)— —2/¢?

when{— oo, in order to be compatible with the bulk solution a? a

(75). In Fig. 2 we compare the boundary layer profiles that + 7005"(5) l2(2)+- (B3)

follow from the analytical solutiofA7) and(A8) with those
obtained numerically. The approximatidn(0)=0 is good  for 7,1/2. Sincec) is regular at the boundary and the

whenM; is not .too large, eg., foM 1=0.1 the agreement boundary layer depth~LY3, the expansioriB3) is actually
between numerics and analytics is better thanMar=1.0. expansion in powers &f3

The important quantity we extract from the boundary layer ¢ \ve substitute the expressidB3) [and the appropriate

considerations and that enters K83) is a=[{f'(§)dé.  gne for the second integral in E@®1)] into the potentiakp,,

The error made by calculating this number using the conditgl), the boundary conditio(79) for z=1/2 takes the form
tion f'(0)=0 is of the order of 30% when compared with
Csi a
Sin E

the numerical result foM,;=1.0, wheref’(0)~ —0.5 (Fig.
a
+Kipl 1(z—12) + €[ — 1 o(z—1/2) +¢c(1/2) ] +---=0

2). This correction would change the analytically determined _ I’{
+eacosh 5

amplitudeg Eqg. (83) in Fig. 1] by only about 1%. 2

APPENDIX B: CALCULATION OF THE MAGNETIC
FIELDS ¢, (B4)

To satisfy the boundary conditions for the magnetic po-where the ellipsis indicates terms d@(L), e.g., |,(z
tential we need to substitute the expressi8d) into Eq. —1/2). From the definition of ;(z) we can see that the
(79). Doing so we get integrals of the type leading contributions in the brackets cancel and only terms

~L?8 are left. Thus, the main contribution td is propor-
tional to the integral ;(z— 1/2),

1/2 1/2 )

f coshaé)cy(¢)d¢, f sinhaé)ci(£)dé, (B1)
0 0 B kwm

~ ksinh(a/2) + eacoshal2) (

z—1/2). (B5)

which would diverge, if we simply used expressiath) for
the concentration field. To resolve these singularities we havéVith the expressiortA8) we can calculate the integrgj(z
solved the boundary layer problem for the concentration field— 1/2):
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112 ) the first integral in Eq(B2) is of O(L), which we neglect.
l1(z—1/2)= (§—1/2)cy(§dé=—(1-My) Finally, the magnetic fields,, in the bulk of the layer takes
a4 the form

( L2 )1/3 . L2 13
X\ A1t gy fo £ (Qdc+o(L), $122)=a(1=Ma)| Tz 5y

(B6) Kb

where we have replacedl as the upper limit of the integral % k sinh(a/2) +'ea cosh{a/2)
by . The error introduced is canceled by the first integral (B7)

of Eq. (B2) (which we have not considered so)firthe bulk

and boundary layer concentration fields are matched at wherea= [;{f’({)d{~2.791 is a real number independent
z=A. Since in the bullc;~L, the remaining contribution of of any parameter of the problem.

sinhlaz)+O(L),
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