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Influence of a magnetic field on the Soret-effect-dominated thermal convection in ferrofluids

Andrey Ryskin and Harald Pleiner
Max-Planck-Institut fu¨r Polymerforschung, D 55021 Mainz, Germany

~Received 17 November 2003; published 14 April 2004!

We investigate theoretically the influence of a magnetic field on the growth of convective rolls in a slab of
ferrofluid subject to a vertical temperature gradient. Due to the pronounced Soret effect of these materials in
combination with a considerable solutal expansion, a dynamic description as a binary mixture is appropriate.
We first derive a comprehensive set of magnetic field effects in the statics and dynamics of binary mixtures.
Among those, the two prominent ones, the Kelvin force and magnetophoresis, are studied in detail with respect
to their influence on the thermal convection behavior. The main difference from the case without an external
field rests in the importance of the boundary layers, which influence the bulk problem through the magnetic
boundary conditions. We discuss an analytical approximate solution and compare it with a numerical multi-
mode expansion.

DOI: 10.1103/PhysRevE.69.046301 PACS number~s!: 47.20.2k, 44.27.1g, 75.50.Mm
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I. INTRODUCTION

Ferrofluids are dispersions of heavy solid ferromagne
grains suspended in a carrier liquid@1#. With a typical diam-
eter of 10 nm the particles are quite large on molecu
length scales, resulting in an extremely small particle mo
ity @2#. This leads to a situation where demixing effects ta
place on time scales far beyond any reasonable observ
time. On the other hand, ferrofluids are characterized b
large thermodiffusive or Soret effect. As a result of the jo
action of thermal and solutal buoyancy forces~e.g., for a
cyclohexane carrier!, the critical Rayleigh number Rac for
the onset of convection is dramatically reduced as compa
to the pure fluid reference value Rac

051708. However, Rac is
experimentally inaccessible due to the extremely sl
growth of convection patterns, requiring extremely large o
servation times. It has been shown recently@3# that, starting
from an initial motionless configuration with a uniform co
centration distribution, convective perturbations grow ev
at Rayleigh numbers well below the threshold Rac

0 of pure
fluid convection. This happens within a time, small co
pared to the creeping solutal diffusion time, but almost
fast as pure-fluid convection does at Ra.Rac

0.
Here we investigate the influence of an external magn

field on this convection scenario for positive separation ra
c. We first ~Sec. II! review the hydrodynamic equations fo
binary mixtures in the presence of an external magnetic fi
We assume the magnetization to be already relaxed to
equilibrium value on the time scales under considerati
The magnetic field effects then come basically in two diff
ent varieties. First the Maxwell stress, which can be writ
as a Kelvin force in the momentum conservation law~the
Navier-Stokes equation!, and second the temperature a
concentration dependence of the magnetic susceptibilit
the statics, which gives rise to a field dependence of heat
concentration currents~magnetophoresis!. If a temperature
gradient is applied across the ferrofluid layer, the experim
tally relevant convection-free ground state is not the t
stationary state with a linear concentration profile, but
purely conducting state with a constant concentration~apart
1539-3755/2004/69~4!/046301~10!/$22.50 69 0463
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from a very thin boundary region! @3# and a linear magnetic
field profile ~Sec. III!. The stability of this ground state i
investigated by solving approximately the nonlinear dynam
equations for deviations from it. Within the usual Boussine
approximation five magnetic field effects, characterized
dimensionless numbers proportional to the field stren
squared, show up in the equations and boundary condit
~Sec. IV!. Among them,M1 , the strength of the magneti
relative to the buoyancy force, andM2 , the magnetophoretic
number, seem to be the most important.

To solve the system of equations we first set up a mu
mode Galerkin description~Sec. V!, where in particular for
the concentration and the magnetic potential the inclusion
many modes turn out to be essential. An approximate an
is solved analytically~Sec. VI!. Here the necessity of dealin
carefully with the boundary layer profiles of concentrati
and magnetic potential~Appendixes A and B! becomes ob-
vious. This approximate analytical solution is compared w
the numerical Galerkin results, in particular with respect
the influence of the Kelvin force (M1) in Sec. VII. The role
of magnetophoresis (M2) on the instability behavior is dis
cussed in Sec. VIII.

II. BASIC EQUATIONS

Ferrofluids can be treated as a superparamagnetic
tinuum @1# that consists of two different nonreacting mate
als ~binary mixture!. An external magnetic field easily in
duces a considerable magnetization in the fluid. T
magnetization is in principle a dynamic degree of freedo
However, it relaxes rather quickly to its equilibrium valu
and orientation given by the Maxwell fieldH. Thus, for the
time scales of interest for the convection problem, we c
always assumeM5M (H). Here we review the hydrody
namic equations for a binary mixture subject to an exter
static magnetic field and bring them into a form suitable
the convection problem. The hydrodynamics is most ea
set up by using those quantities as dynamic variables tha
related to local conservation laws@4#. In our case, those ar
the densityr, momentum densityrv, entropy densitys, and
concentrationC ~of magnetic particles!, while the chemical
©2004 The American Physical Society01-1
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A. RYSKIN AND H. PLEINER PHYSICAL REVIEW E69, 046301 ~2004!
potentialm, the velocityv, the temperatureT, and the relative
chemical potentialmc are taken as their respective therm
dynamic conjugate quantities. The dynamic equations r
@4#

ṙ1div~rv!50, ~1!

ṡ1v"“s5“•k̃“T1“•D̃T“S mc

r D1
R

T
, ~2!

r~Ċ1v"“C!5“•D“S mc

r D1“•D̃T“T, ~3!

r~ v̇ i1v j¹jv i !1¹i p5¹jrn i jkl ¹lvk1M j¹iH j1rgi
E , ~4!

while the magnetic fieldH and inductionB are determined
by Maxwell’s equations, which read in the static and nonc
ducting case

“"B50, ~5!

“3H50. ~6!

Generally, due to the presence of an external field, the tr
port coefficientsk̃, D̃T , andD should be written as tensor
of the form Di j 5Dd i j 1DRe i jkHk with Hall- or Righi-
Leduc-type contributions@5#. However, those terms are in
operative for the geometry considered below. The sam
true for similar linear field contributions to the viscosity te
sor @5#, which can qualitatively change the patterns in t
Benard instability in ferronematics@6#, but do not contribute
here.

As usual for convection problems, we apply the Bou
inesq approximation implying incompressibility divv50,
neglect of the dissipation functionR in Eq. ~2!, and taking all
material parameters as constants except for the density in
gravity forcergi

E . The Navier-Stokes equation~4! has been
written in a form where the Kelvin force, withM5B2H @7#,
shows up on the right hand side. Due to the incompressib
approximation the pressurep is no longer a thermodynami
variable and its dependence on the magnetic field is ir
evant. It is only an auxillary quantity that ensures the inco
pressibility condition for all times, but it is not needed in th
following. As discussed above, the magnetization is no
dynamic degree of freedom.

To close the system of equations we need the static r
tions between the conjugate quantities and the variab
Standard procedure gives@4#

dT5
T

cV
ds1bcdC, ~7!

dmc5gdC1bcds, ~8!

dB5~11x!dH, ~9!

derived from an energy density
04630
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2cV
~ds!21b~ds!~dC!

1
g̃

2
~dC!21

1

2
~11x!~dH!2. ~10!

In this form the static equations generally are not suita
for ferrofluids, since the magnetic susceptibilityx depends
considerably on the concentration~of the magnetic particles!,
the temperature, and the external field. Switching to the te
perature as variable by a Legendre transformationẽ5e
2(ds)(dT), and takingx5x(T,C,H2), we get

ds5
cH

T
dT2

bHcV

T
dC1xTH0•dH, ~11!

dmc5gHdC1
bHcV

T
dT1xcH0•dH, ~12!

dB5~11x0!dH1H0~xTdT1xcdC1xHH0•dH!,
~13!

wherex0 is the ~constant! magnetic susceptibility taken a
the equilibrium fieldH0 , equilibrium temperatureT0 , and
equilibrium concentrationC0 . It is assumed to be a know
function ofH0

2. Up to second order derivatives ofx we have

cH5cV2
T0

2
H0

2 ]2x

]T2 , ~14!

bH5b1
T0

2cV
H0

2 ]2x

]T ]C
, ~15!

gH5g̃2
b2cV

T0
1

1

2
H0

2 ]2x

]C2 , ~16!

xT5
]x

]T
1H0

2 ]2x

]T ]H2 , ~17!

xc5
]x

]C
1H0

2 ]2x

]C ]H2 , ~18!

xH54
]x

]H2 12H0
2 ]2x

~]H2!2 , ~19!

implying an H0
2 dependence of the usual static susceptib

ties. In principle, the static susceptibilities can be arbitra
functions ofH0

2. Thermodynamic stability~positivity of the
energy functional! requires the following positivity condi-
tions:

cH.0, gH.0, 11x0.0, ē.0,

cHgH.S bHcV

T D 2

, cHē.xT
2H0

2, gHḡ.xc
2H0

2, ~20!

with ē511x01xHH0
2 @8#.
1-2
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INFLUENCE OF A MAGNETIC FIELD ON THE SORET- . . . PHYSICAL REVIEW E 69, 046301 ~2004!
In order to retain the buoyancy force, the temperature
concentration dependence of the density has to be kept in
gravity force, which can be written as

rgi
E52gEr0~11audT2acdC2aHH0•dH!d iz ,

~21!

taking thez direction as the vertical one. The magnetic fie
contribution to the buoyancy force due to deviations of
magnetic field from its constant and homogeneous equ
rium value has been introduced for completeness.

Combining the static and dynamic parts, the basic eq
tions are

div v50, ~22!

cH

T0
S ]

]t
1v"“ DT1xTH0•S ]

]t
1v"“ DH

5k̄DT1D̄T

gH

r0
DC1D̄T

xc

r0
H0•DH, ~23!

r0S ]

]t
1v"“ DC5D

gH

r0
DC1D̄TDT1D

xc

r0
H0•DH,

~24!

S ]

]t
1v"“ D ~curlv! i5e ikzgE~au¹kT1ac¹kC1aHH0•¹kH!

1
1

r0
e ikl~H0•¹lH!~xT¹kT1xc¹kC!

1nD~curlv! i ~25!

with D5“

2 and

k̄5k̃12D̃T

bHcV

r0T0
1DS bHcV

r0T0
D 2

, ~26!

D̄T5D̃T1D
bHcV

r0T0
. ~27!

The temperature conduction coefficient isk[k̄T0 /cH , the
diffusion coeffient Dc[DgH /r0

2, the Soret coefficient is

Ds[D̄T /r0 , the Dufour coefficient is D f

[D̄TgHT0 /(r0cH), andn is the dynamic shear viscosity.
The boundaries are assumed to be ideal thermal con

tors; thus the temperature of the fluid at the boundarie
identical to the applied temperature. Note that in real exp
mental situations the finite heat conductivity of the boun
aries could lead to some noticeable effects@9#, but we are not
going to discuss these effects in what follows. For the vel
ity field we assume ‘‘rigid’’ boundary conditions, while fo
the magnetic field and magnetic induction the usual conti
ity conditions apply:

n̂•~Bint2Bext!50, ~28!

n̂3~H int2Hext!50, ~29!
04630
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with n̂ the normal to the boundaries. For the concentration
the ferroparticles we have the impermeability condition, i.
no flux on the boundaries is allowed,

DgHn̂"“C1r0D̄Tn̂"“T1DxcH0•~ n̂"“ !H50. ~30!

III. HEAT CONDUCTING STATE

For a layer of thicknessd with prescribed temperaturesT0
andT1 at the boundariesz50 andd, respectively, and with
infinite lateral dimensions, the pure conductive state is ea
found. The concentration and the magnetic field show lin
z deviations from the equilibrium values, given by th
boundary conditions~28!, ~30!:

v50, ~31!

T5T02bz, ~32!

C5C01
D1

D2
bz, ~33!

Hz5H0S 11
DgHxT2r0xcD̄T

ēD2
bzD , ~34!

whereb5(T02T1)/d, H0 is related to the strength of th
magnetic field outside the layerH0

ext by the expressionH0
ext

5@H01M (H0)#êz , D15r0D̄T@11O(H0
2)#, and D2

5DgH@11O(H0
2)#. However, as was the case in therm

convection without a magnetic field@3#, to reach this con-
ductive state one needs to wait until the very slow proces
concentration diffusion has equilibrated. As estimated in@3#
this takes as long as a week under the usual experime
conditions. For this reason we consider the stability not
the state given by Eq.~33! but of the quasistationary stat
when the temperature field Eq.~32! is equilibrated, but the
concentration field is still homogeneous except for very t
boundary layers near the boundaries. This situation is sim
to that without a magnetic field considered in@3#. With this
approximation the quasistationary state reads

v50, ~35!

T5T02bz, ~36!

C5C0 , ~37!

Hz5H0S 11
xT

ē
bzD . ~38!

This state is not a solution of the boundary condition~30!,
but it gives a good approximation to the solution for expe
mentally relevant times.

IV. DEVIATIONS FROM THE CONDUCTING STATE

The next step is to write the equations for the deviatio
from the heat conducting state~35!–~38!. To do so in dimen-
sionless form we introduce the characteristic scalesd for
1-3
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A. RYSKIN AND H. PLEINER PHYSICAL REVIEW E69, 046301 ~2004!
length, d2/k for time ~with k5k̄T0 /cH), bd for tempera-
ture, bD̄Tr0d/(DgH) for concentration,k/d for velocity,
andbdxTH0 / ē ~with ē[11x01xHH0

2) for magnetic field.
For the deviations from the magnetic field~38! a scalar po-
tential can be introduced,H5Hzêz2“f, while the mag-
netic potential outside the layer is defined byHext5H0

ext

2“fe . The deviation of the temperature from Eq.~36! is u.
Then Eqs.~5! and ~22!–~25! lead to

“•v50, ~39!

F ]

]t
1~v•“ !G~u2M4¹4f!

5w~12M4!1Du1FD~C2M2¹zf!, ~40!

F ]

]t
1~v•“ !GC5LD~u1C2M2¹zf!, ~41!

1

PrF ]

]t
1~v•“ !G~curlv! i

5Rae ikz¹k@~11M1!u2~c1cmM1!C

1~M52M1!¹zf#2RaM1e ikl~¹l¹zf!

3¹k~u2cmC!1D~curlv! i , ~42!

~¹z
21M3D'!f5¹z~u2cmC!, ~43!

Dfe50, ~44!

wherew is the z component of the velocity. The transver
LaplacianD'5D2¹z

2. The nondimensional parameters i
troduced here are: the Rayleigh number
5aubgEd4/(kn), the Prandtl number Pr5n/k, the separa-
tion ratio c5acr0D̄T /(augHD), the magnetic separatio
ratio cm52xcr0D̄T /(xTgHD), the Lewis number L
5gHcHD/(r0

2k̄T0)5Dc /k, the strength of the magneti
force relative to buoyancyM15bxT

2H0
2/(r0gEauē), the

magnetophoretic numberM25DxcxTH0
2/(r0D̄Tē), the non-

linearity of magnetizationM35(11x0)/ ē'12xHH0
2/(1

1x0), the relative strength of the temperature dependenc
the magnetic susceptibilityM45xT

2H0
2T0 /(cHē), the ratio of

magnetic to thermal buoyancyM55aHxTH0
2/(auē), and the

Dufour numberF5D̄T
2/(Dk̄)5DsD f /(kDc). The stability

conditions~20! requireM4,1 andM2cm.21.
According to our choice of ‘‘rigid’’ and ideally conducting

boundaries, the boundary conditions for the deviations fr
the conducting state read

uuz561/250, ~45!

wuz561/250, ~46!

¹zwuz561/250, ~47!

¹z~u1C2M2¹zf!uz561/2512M2 , ~48!
04630
of

and the magnetic boundary conditions~28! and ~29! are

ē~¹zf1cmC!2¹zfeuz561/250, ~49!

“'f2“'feuz561/250. ~50!

These boundary conditions close the problem of finding
fields v, u, C, f, andfe .

V. SIMPLE GALERKIN SOLUTION

The set of equations derived in the previous section is
unnecessarily complicated. We will simplify it first by ne
glecting the Dufour effect, i.e., puttingF50, as is usually
done for any liquid. Second, we discardM4 , which is a
common simplification in the description of instabilities
ferrofluids @10,11#. SinceM4 is not related to concentratio
effects, which we are interested in here, we expect not to
any reasonable aspect of the problem under considera
The same is true for the coefficientM5 . It may be important
in a situation where the concentration dynamics is not c
sidered at all, since in that case it is the only nontherm
contribution to buoyancy. Thus, we are left with three ma
netic field dependent effects characterized byM1,2,3. The
first denotes the influence of the Kelvin force and is expec
to have the dominant influence on the convection behav
The second effect, which we will treat in a second st
constitutes magnetophoresis, the dependence of the con
tration current on the magnetic field. The third effect is d
to the nonlinearity of the magnetization as a function of t
Maxwell field. Generally,M3 is rather close to 1~the linear
casex5const orM;H); since the dependence onM3 is
rather weak we always takeM351.1. The parameterc is
known to be between 10 and 100 and can have negativ
positive sign depending on the ferrofluid used@12#. Here we
consider only the case of a positive value ofc. Making a
simple estimate, we find that the valuecm has the same sign
and is of the same order of magnitude asc for typical fer-
rofluids.

The boundary value problem obtained in this way is s
too complicated to allow a simple analytical~one-mode so-
lution!, even if unrealistic ‘‘free’’ boundary conditions ar
used for the velocity field. This is due to the magnetic boun
ary condition~49! which involves the concentration. Sacr
ficing this condition, however, would change the bifurcati
scenario qualitatively, rendering such an analytical solut
worthless. Instead, any realistic treatment has to take
account the boundary layer fields of concentration and m
netic field potential. We will do this analytically later on in
simplified way guided by the numerical results, which w
will derive first using the Galerkin technique. To that end w
make the following ansatz of a two-dimensional patte
which is laterally ~in the x direction! infinite and periodic
with wave number k. These equations describe two
dimensional convection in the form of parallel rolls along t
y axis in an infinite slab of thickness 1. In the lateral dire
tion we will restrict ourselves to the fundamental mode, n
glecting higher harmonics, while in thez direction ~across
the layer! a multimode description will be used where ne
essary. We have
1-4
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INFLUENCE OF A MAGNETIC FIELD ON THE SORET- . . . PHYSICAL REVIEW E 69, 046301 ~2004!
C~x,z,t !2C05c0~z,t !1c1~z,t !coskx, ~51!

u~x,z,t !5u0~z,t !1u1~z,t !coskx, ~52!

vx~x,z,t !52~1/k!¹zw1~z,t !sinkx, ~53!

vz~x,z,t !5w1~z,t !coskx, ~54!

f~x,z,t !5f0~z,t !1f1~z,t !coskx, ~55!

with incompressibility already built in. We can get rid of th
external potentialfe by solving Eq.~44! explicitly. The so-
lutions that vanish atz56` and satisfy the boundary con
dition ~50! are fe5exp(k/2)exp(7kz)f1(z561/2,t)coskx
for the ranges$1/2, `% and $21/2, 2`%, respectively. The
boundary conditions~49! can then be written in final form

ē~¹zf11cmc1!6kf1uz561/250, ~56!

¹zf01cmc0uz561/250. ~57!

Substituting Eqs.~51!–~55! into the nonlinear equation
of motion ~39!–~43! and sorting for different lateral depen
dencies yields the following system of equations:

1

Pr
] t~¹z

22k2!w152Rak2@~12M1!u12~c1M1cm!c1

2M1¹zf1#1RaM1k2~u12cmc1

2¹zf1!¹z~u02cmc0!1~¹z
22k2!2w1 ,

~58!

] tc01
1

2
¹z~w1c1!5L¹z

2@~11M2cm!c01~12M2!u0#,

~59!

] tc11w1¹zc05L~¹z
22k2!~c11u12M2¹zf1!, ~60!

] tu01
1

2
¹z~w1u1!5¹z

2u0 , ~61!

] tu11w1¹zu052w11~¹z
22k2!u1 , ~62!

~¹z
22M3k2!f15¹z~u12cmc1!. ~63!

The field f0 has already been eliminated with the help
¹z

2f05¹z(u02cmc0). This has also been used to write th
remaining boundary conditions as

¹z~c11u12M2¹zf1!uz561/250, ~64!

¹z$~11M2cm!c01~12M2!u0uz561/2512M2 , ~65!

u1uz561/25u0uz561/250, ~66!

w1uz561/25¹zw1uz561/250. ~67!

To solve this boundary value problem we adopt verti
profilesw1 , u0 , u1 , c0 , c1 , andf1 in the form
04630
f

l

w1~z,t !5A~ t !cos2~pz!, ~68!

u1~z,t !5B~ t !cospz, ~69!

u0~z,t !5G~ t !sin 2pz, ~70!

c0~z,t !5
12M2

11cmM2
@z2u0~z,t !#

1 (
n50

n5N

an~ t !sin~2n11!pz, ~71!

c1~z,t !52u1~z,t !1 (
n50

n5N

bn~ t !cos 2npz, ~72!

f1~z,t !5A0~ t !z1 (
n50

n5N1 An~ t !sin 2pnz

2pn
, ~73!

which satisfy the boundary conditions~56!, ~64!–~67! iden-
tically, if A0(21k)1(n51

N1 (2)nAn1cm(n51
N (2)nbn50 is

chosen.
We point out that forc50 andcm50 the concentration

fields decouple from temperature and velocity. This redu
Eqs. ~68!–~70! in the absence of the magnetic field to th
three-mode model introduced by Lorenz@13# to mimic the
dynamics of convective rolls in single-component Rayleig
Bénard convection. In the case of finite magnetic field this
a somewhat modified Lorenz model for a magnetic flu
@14#. At nonzeroc and cm , convection is modified by the
concentration field but we can adopt the above few-mo
expansion for temperature and velocity@3# without modifi-
cations, because the diffusivities for heat and momentum
large enough to prevent the appearance of strong gradie
By way of contrast, owing to the small Lewis number, t
concentration field does build up steep boundary laye
which we account for by aN-mode Fourier series as given i
Eqs. ~71! and ~72!. The situation with a magnetic field i
somewhat intermediate, since the magnetic potentia
coupled dynamically~63! and by the boundary condition
~56! to the concentration field with its strong gradients. W
use a multimode expansion for the magnetic field with
number of modesN1 which is selected independently ofN.
For c0 the modes are antisymmetric inz, while for c1 sym-
metric modes are appropriate. The numbersN andN1 of the
contributing modes were taken large enough to ensure
the results are insensitive against a further increase of th
numbers. For the parameter values considered here,N550
andN1550 turned out to be sufficient.

VI. APPROXIMATE ANALYTICAL SOLUTION

In this section we derive an approximate analytical s
tionary solution, which fits the numerical solution, describ
above, very well. To get this solution, we make use of t
fact thatL;1024 is extremely small. Starting with the sys
tem of equations~58!–~63!, we use the Lorenz representatio
of the temperature and velocity field~68!–~70! and derive
approximate solutions forc0 , c1 , andf1 avoiding the com-
1-5
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A. RYSKIN AND H. PLEINER PHYSICAL REVIEW E69, 046301 ~2004!
plicated mode expansion~71!–~73!.
Let us first consider Eq.~59!. In the stationary case, w

can integrate this equation once. With the boundary con
tions ~65! and ~67! we find

1

2
~w1c1!5L¹z@~11M2cm!c01~12M2!u0#2L~12M2!.

~74!

Far from the boundariesc0 andc1 are;L. This can easily
be seen from the consistency of Eq.~61! with Eq. ~74! taking
into account that far from the boundaries the derivatives
the functions are small. Thus, in Eq.~74! we can neglectc0 ,
when we are far from the boundaries. Futhermore, we
neglect¹zu0 compared to 1, since its influence is very we
@15#. This latter approximation is good, when the amplitu
of the velocity is still small, sinceu0 is the nonlinear term in
the Lorenz model. Taking this into account we can get
concentration field far from the boundaries as

c1522L~12M2!/w. ~75!

To satisfy the boundary conditions forc1 and to find the
profile of the concentration field near the boundaries o
needs to solve the boundary layer problem. The expres
~75! diverges close to the boundaries as 1/(z21/2)2 ~if the
boundary is onz51/2). Thus, the solution of the bounda
layer problem has to behave asymptotically like 1z
21/2)2 far from the boundary, in order to match with E
~75!. The boundary layer problem for the concentration fie
is considered in the Appendix A.

Since the boundary layer depthd is proportionalL1/3 ~see
Appendix A! the contribution of the boundary layers give
only small;L1/3 corrections to the amplitude equation a
the expression~75! can be used withw15A cos2(pz).

The next step is to calculate the magnetic field poten
f1 from Eq. ~63!. To do that we split the magnetic potenti
into two partsf15f111f12 so that

~¹z
22M3k2!f115¹zu1 , ~76!

~¹z
22M3k2!f1252cm¹zc1 , ~77!

with the boundary conditions

ē¹zf116kf11] z561/250, ~78!

ē~¹zf121cmc1!6kf12] z561/250. ~79!

The solution forf11 is straightforward and simple whe
we take the temperature field in the form of Eq.~69!,
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f115
pB

p21a2 S sin~pz!2
k sinh~az!

k sinh~a/2!1 ēa cosh~a/2! D
~80!

with a5AM3k. The solution forf12 has the form

f125M sinh~az!2
cm

a S sinh~az!E
0

z

cosh~aj!c18~j!dj

2cosh~az!E
0

z

sinh~aj!c18~j!dj D ~81!

with M a constant of integration. Note thatf12(z) has to be
an antisymmetric function inz. To find M we consider the
boundary condition~79!. This is done in Appendix B with
the final result

f12~z!5a~12M2!S L2

p4A2~11cmM2! D
1/3

3
kcm

k sinh~a/2!1 ēa cosh~a/2!
sinh~az!1O~L !,

~82!

wherea52*0
`z f 8(z)dz'2.791 is a real number of order

independent of any parameter of the problem, and the fu
tion f (z) is defined in Eq.~A7! in Appendix A.

Having found an approximate expression for the profi
of the concentration and magnetic potential we substit
them into Eq.~59! and then project this equation on th
weight function cos2(pz). Equations~61! and ~62! are to be
projected with the weight functions sin(2pz) and cos(pz),
respectively. This leads to a system of three algebraic eq
tions for the amplitudesA, B, G @Eqs. ~68!–~70!#, from
which we get the final~implicit! expression for the saturatio
amplitudeA as a function of the parameters of the proble

18p4

Ra
5

11M1~h22ph̄G!

113A2/40p2

1~12M2!
32p2

3A2 FL~c1M1cm!

1g~12ḡG!M1cmS L2A

11cmM2
D 1/3G . ~83!

Here
h512
p2

p21a2 1
3p5 sinh~a/2!

~p21a2!~4p21a2!@p sinh~a/2!1 ēa cosh~a/2!#
, ~84!

h̄5
3

5 S 12
p2

p21a2D1
p2

p21a2

a

@p sinh~a/2!1 ēa cosh~a/2!#

3p3~8p22a2!sinh~a/2!

a~a4120a2p2164p4!
, ~85!
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g5a
2p5/3sinh~a/2!

~a214p2!@p sinh~a/2!1 ēa cosh~a/2!#
, ~86!

ḡ5p2
3pa2

a2116p2 . ~87!
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G, the stationary amplitude ofu0 Eq. ~70!, is

G5
9A2

160p3~113A2/40p2!
, ~88!

while B5(5p2/2A)G. In Eq. ~83! we have chosenk5p in
order to simplify the formula. This is reasonable, since
wave number of the maximum growthkc is close top. The
second term on the right of Eq.~83! can be seen as an ex
pansion incmL2/3 andcL. Since the prefactor of the forme
is quite small, we have also kept the leading contribution
order cmL. The complete evaluation of thecmL term is
hardly worth doing, since it makes formula~83! unnecessary
complicated without significantly changing the quantitati
results. The occurrence of fractional powers ofA2 andL as
products withcm and M1 indicates the importance of th
boundary layers in the case of an external field.

VII. INFLUENCE OF THE KELVIN FORCE

We first investigate the influence of the Kelvin force o
the convection and disregard magnetophoresis for the
ment by puttingM250. The equations for the mode amp
tudesA, B, G, an , and bn have been solved by a Rung
Kutta integration. The wave numberk, usually taken to
characterize the mode of maximum linear growth r
l(k,Ra), varies between 3 and 3.5 within the Rayleigh nu
ber regime investigated. However, since the final predicti
of our model turn out not to depend sensitively on thek
value chosen, we adopt in all of our simulationsk53.1. All
runs are started from the initial configuration of an und
turbed linear temperature and magnetic field profile an
constant concentration as given in Eqs.~36!–~38! and small
random velocity fluctuations to start the convection proce

In all of our runs the convective motion was found
settle into a stationary convection in the same way as it i
the absence of magnetic field@3#. There are roughly three
different regimes of time evolution: linear growth, nonline
transition to a saturation state, and the saturation state it
When we fix the temperature gradient~i.e., take the Rayleigh
number constant! and change the magnetic field strength,
have the bifurcation picture as a function ofM1 . This is the
most convenient bifurcation curve to compare with expe
ment, since during experiments it is much easier to cha
M1 ~i.e., the magnetic field! than the Rayleigh number~i.e.,
the temperature difference!. This bifurcation diagram is
shown in Fig. 1 for different values of the separation ratiosc
andcm . These two parameters are related to the two dif
ent mechanisms of how the concentration inhomogen
changes the bifurcation picture. The separation ratioc is
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independent of the magnetic nature of the grains and
scribes the concentration buoyancy force due to the den
difference of the solvent liquid and the magnetic grains. T
second mechanism is due to the Kelvin force which ari
from the concentration variations of the magnetic partic
and the resulting strong variations of the magnetic susce
bility. This effect relies on the magnetic nature of the ferro
luid particles and is characterized by the magnetic separa
ratio cm .

Without any concentration variations (cm50 andc50)
we have the usual pitchfork bifurcation with respect toM1
~Fig. 1!. If only the nonmagnetic mechanism is switched
(c510,cm50), the bifurcation looks like an imperfect on
with a nonzero saturation amplitude even in the subcriti
parameter range. In the supercritical parameter range the
plitude approaches that of the homogeneous ferrofluid. If
additionally switch on the magnetic buoyancy effect (cm
510), the bifurcation deviates strongly from the previo
cases and, in particular, has a different saturation beha
for strong magnetic fields. We should point out that in ord
to get this numerical result at least 50 modes each for
concentration and magnetic field have to be taken into
count. Comparing this to the case without a magnetic fi
@3#, when 20 modes were more than enough, we can see
importance of the boundary layers when the magnetic fiel
on. In Fig. 1 the analytical results, Eq.~83!, are shown as
dashed lines. The agreement between the numerical and
lytical result is very good.

VIII. INFLUENCE OF MAGNETOPHORESIS

In this section we discuss the influence of magnetopho
sis (M2Þ0). In the implicit equation for the amplitude, Eq
~83!, the magnetophoretic effect is manifest in two differe

FIG. 1. The saturation amplitudeAsat5A(t→`) as a function of
M1 at Ra51300 for different values ofc and cm ~see text!. The
dashed lines are the analytical result~83!.
1-7
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ways. First, there is the global prefactor (12M2) in the sec-
ond term and, second, there is the denominator
1M2cm)1/3 in the term proportional toL2/3. Since M2 is
negative butM2cm.21 @cf. the discussion after Eq.~44!#
both effects grow with the external field.

The second effect gets very pronounced when the pro
M2cm approaches its stability limit21. This happens for a
magnetic fieldH0→Hc with Hc

25gHēxc
22, where, however,

the susceptibilities may themselves be~weak! functions of
H0

2 for strong fields. In that limit the boundary layer becom
singular, which is indicated in the numerical approach by
necessity to take into account more and more spatial mo
The analytical treatment also breaks down and Eq.~83! is no
longer a good description. The breakdown of thermodyna
stability also shows up in the diffusion equation for the co
centration

] tc~z,t !5L~11cmM2!]z
2c~z,t ! ~89!

that follows from Eqs.~41! and ~43! under the assumption
that the temperature equilibrates much faster. ForH0→Hc
the diffusional time scale diverges and, therefore, the bou
ary layer profile gets sharper. This can also be inferred fr
the Eq.~A8!, which shows the boundary layer depth to sc
with @L(11cmM2)#1/3. For the amplitude the effect ofM2
is very weak and hardly visible in a plot like Fig. 1, exce
for the immediate vicinity of the stability limit (11M2cm)
50.

The breakdown of thermodynamic stability may be
lated to particle agglomeration and internal structure form
tion. The magnetophoretic effect is due to the force t
drives magnetic particles to areas of larger magnetic fi
strength. This leads to agglomerations where the magn
field is larger and consequently attracts further particles. T
mechanism is compensated by the~magnetic field indepen
dent! diffusive motion of the particles. When the strength
the magnetic field exceeds a certain value, the diffusion f
to prevent agglomeration of the particles and structures
built. In that case a description in terms of an ordinary bin
mixture is no longer possible.

IX. CONCLUSION

We have derived the complete set of equations to desc
ferrofluids in an external magnetic field in terms of a bina
mixture. Magnetophoretic effects as well as magne
stresses have been taken into account in the static and
namic parts of the equations. They were used to investig
the thermal convection instability of ferrofluids in the pre
ence of an external magnetic field. As in the case withou
magnetic field, the effect of the concentration field is ma
fest in an apparent imperfection of the bifurcation. A ma
netic field makes this imperfection more prononced. Mo
important, however, not only does an external magnetic fi
lead to pronounced boundary layer profiles~with respect to
the concentration and magnetic potential!, this boundary
layer also couples effectively to the bulk behavior due to
magnetic boundary condition. This makes the numerical
lution of the bifurcation problem considerably more comp
04630
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cated than without a magnetic field. Nevertheless, we w
able to present an approximate analytical solution by tak
explicitly into account part of the boundary layer behavi
The agreement between the analytical and the numerica
lutions was very good. We also discuss the limitations of
binary mixture model. In a strong external field diffusio
fails to prevent agglomeration of the particles due to mag
tophoresis. In that case the breakdown of the binary mixt
model shows up by the occurrence of a negative effec
diffusion constant.
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APPENDIX A: THE BOUNDARY LAYER PROBLEM

We consider Eqs.~60!, ~74!, and~79! in the vicinity of the
boundaryz51/2. Near the boundary the derivatives with r
spect toz of the functionsc0 , c1 , andf are large and we use
this fact to simplify these three equations as

1

2
~w1c1!5L~11M2cm!c082L~12M2!, ~A1!

w1c085L~c192M2f12- !, ~A2!

f129 52cmc18 , ~A3!

under the assumptions

f11- !f12- and ¹z
2@k2. ~A4!

Combining these three equations into one we get an equa
for c1 ,

1

2
wc15

L2~11M2cm!2

w
c192L~12M2!. ~A5!

Near the boundaryz521/2 we have«5z21/2!1. Expand-
ing cos2(pz) in powers of« the velocityw15Ap2«2 and Eq.
~A5! takes the form

p2A

2L~12M2!
«4c15

L~11M2cm!2

p2A~12M2!
c192«2. ~A6!

We rescale the concentration field andz coordinate in such a
way that the final equation becomes independent of any
rameters and appears to be a universal equation defining
boundary layer profile,

1

2
z4f 1z25 f 9, ~A7!

with
1-8
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z5S p2A

L~11cmM2! D
1/3

«, c1~z!5~12M2!

3S L

p2A~11cmM2!2D 1/3

f ~z!. ~A8!

Thus, the layer depthd scales withL1/3. We assume that the
boundary condition~64! for the concentration fieldc1 can be
replaced by a homogeneous onec18(61/2)50 leading to
f 8(0)50. In this case the boundary layer profile becom
self-similar. As a second boundary condition we require t
the function f (z) has the asymptotic formf (z)→22/z2

whenz→`, in order to be compatible with the bulk solutio
~75!. In Fig. 2 we compare the boundary layer profiles th
follow from the analytical solution~A7! and~A8! with those
obtained numerically. The approximationf 8(0)50 is good
when M1 is not too large, e.g., forM150.1 the agreemen
between numerics and analytics is better than forM151.0.
The important quantity we extract from the boundary lay
considerations and that enters Eq.~83! is a5*0

`j f 8(j)dj.
The error made by calculating this number using the con
tion f 8(0)50 is of the order of 30% when compared wi
the numerical result forM151.0, wheref 8(0)'20.5 ~Fig.
2!. This correction would change the analytically determin
amplitudes@Eq. ~83! in Fig. 1# by only about 1%.

APPENDIX B: CALCULATION OF THE MAGNETIC
FIELDS f12

To satisfy the boundary conditions for the magnetic p
tential we need to substitute the expression~81! into Eq.
~79!. Doing so we get integrals of the type

E
0

1/2

cosh~aj!c18~j!dj, E
0

1/2

sinh~aj!c18~j!dj, ~B1!

which would diverge, if we simply used expression~75! for
the concentration field. To resolve these singularities we h
solved the boundary layer problem for the concentration fi

FIG. 2. The boundary layer profiles obtained from~a! the ana-
lytical solution f (z), Eq. ~A7!, ~b! the multimode numerical solu
tion scaled with Eq.~A8! for M150.1, and~c! for M151.0 (M2

50, c510, andcm510).
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in the preceding section. Let us consider the first integral;
second one is treated in the same way. We can divide
integral into two parts:

E
0

1/2

cosh~aj!c18~j!dj5E
0

1/22D

cosh~aj!c18~j!dj

1E
1/22D

1/2

cosh~aj!c18~j!dj.

~B2!

HereD is a small but fixed value, chosen in such a way th
for z.D the bulk profile~75! and for z,D the boundary
layer profile ~A8! are valid. In the second integral we ca
expand cosh(aj) in the vicinity of j51/2. Then we can write

E
1/22D

z

cosh~aj!c18~j!dj

5coshS a

2D E
1/22D

z

c18~j!dj1a sinhS a

2D
3E

1/22D

z

~j21/2!c18~j!dj1¯

[coshS a

2D I 0~z!1a sinhS a

2D I 1~z!

1
a2

2
coshS a

2D I 2~z!1¯ ~B3!

for z→1/2. Sincec18 is regular at the boundary and th
boundary layer depthd;L1/3, the expansion~B3! is actually
an expansion in powers ofL1/3.

If we substitute the expression~B3! @and the appropriate
one for the second integral in Eq.~B1!# into the potentialf12
~81!, the boundary condition~79! for z51/2 takes the form

M Fk sinhS a

2D1 ēa coshS a

2D G
1kcmI 1~z→1/2!1 ē@2I 0~z→1/2!1c~1/2!#1¯50

~B4!

where the ellipsis indicates terms ofO(L), e.g., I 2(z
→1/2). From the definition ofI 0(z) we can see that the
leading contributions in the brackets cancel and only ter
;L2/3 are left. Thus, the main contribution toM is propor-
tional to the integralI 1(z→1/2),

M52
kcm

k sinh~a/2!1 ēa cosh~a/2!
I 1~z→1/2!. ~B5!

With the expression~A8! we can calculate the integralI 1(z
→1/2):
1-9
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I 1~z→1/2!5E
1/22D

1/2

~j21/2!c18~j!dj52~12M2!

3S L2

p4A2~11cmM2! D
1/3E

0

`

z f 8~z!dz1O~L !,

~B6!

where we have replacedD as the upper limit of the integra
by `. The error introduced is canceled by the first integ
of Eq. ~B2! ~which we have not considered so far! if the bulk
and boundary layer concentration fieldsc1 are matched a
z5D. Since in the bulkc1;L, the remaining contribution o
.

04630
l

the first integral in Eq.~B2! is of O(L), which we neglect.
Finally, the magnetic fieldf12 in the bulk of the layer takes
the form

f12~z!5a~12M2!S L2

p4A2~11cmM2! D
1/3

3
kcm

k sinh~a/2!1 ēa cosh~a/2!
sinh~az!1O~L !,

~B7!

wherea5*0
`z f 8(z)dz'2.791 is a real number independe

of any parameter of the problem.
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